Membrane proteins of the nerve growth cone and their developmental regulation.

نویسندگان

  • P Simkowitz
  • L Ellis
  • K H Pfenninger
چکیده

The membrane polypeptides of growth cone fragments ("growth cone particles," GCPs) isolated from fetal rat brain by subcellular fractionation have been analyzed in further detail. The major polypeptides of salt-washed GCP membranes detected by 1-dimensional gel electrophoresis (Ellis et al., 1985b) resolve in 2-dimensional gels as a spot of 52 kDa that comigrates with beta-tubulin and reacts with anti-beta-tubulin; a 46 kDa, pl 4.3, polypeptide (pp46) that has no equivalent in the soluble fraction and is identical to one of the GCP's major phosphoproteins (Katz et al., 1985) and to GAP43 (Willard et al., 1985); a spot of 42 kDa that comigrates with actin; and a species of 34 kDa (p34) without soluble equivalent. The prominent 38 kDa doublet identified in 1-dimensional gels is difficult to resolve in 2-dimensional gels. The major phosphoproteins pp80ac, pp46, and pp40 (Katz et al., 1985), as well as p34 partition into the oil phase of Triton X-114 extracts, suggesting that they are integral membrane proteins, at least in our experimental conditions. The properties of pp46 reported here are in conflict with the highly hydrophilic amino acid sequence predicted for GAP43/B50/F1 (Basi et al., 1987; Karns et al., 1987). Growth-cone and presynaptic membrane proteins are compared as follows. After eye injection of 35S-methionine, GCPs and synaptosomes are isolated from the target areas of optic nerve of fetal and adult rats, respectively. Polypeptides are separated by 1- and 2-dimensional gel electrophoresis and the radiolabeled species identified fluorographically. The comparison of labeled GCP and synaptosome polypeptides shows that all 5 major Coomassie blue-stained polypeptides of GCP membranes (52, 46, 42, 38, 34 kDa) are intensely labeled after eye injection. However, in synaptosomes, these polypeptides are weakly labeled if at all; instead, an intensely labeled polypeptide of 28 kDa, and several additional species not seen in GCPs, have appeared. Therefore, the major growth cone membrane proteins are developmentally regulated, and the rates of synthesis and transport into the axonal ending of neuronal polypeptides change dramatically at the time of synaptogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lentiviral Mediated Expression of Soluble Neuropilin 1 Inhibits Semaphorin 3A-mediated Collapse Activity in Vitro

Introduction: Semaphorin 3A (Sema 3A) is a secreted protein, which plays an integral part in developing the nervous system. It has collapse activity on the growth cone of dorsal root ganglia. After the development of the nervous system, Sema 3A expression decreases. Neuropilin 1 is a membrane receptor of Sema 3A. When semaphorin binds to neuropilin 1, the recruitment of oligodendrocyte precurso...

متن کامل

Pii: S0306-4522(98)00497-7

Neurotransmitter secretion from the nerve terminal is mediated by the fusion of synaptic vesicles with the plasma membrane. It is generally believed that neurotransmitter release in mature synapses is localized to the presynaptic nerve terminals. To probe the topology of neurotransmitter secretion along developing axons in culture, we recorded membrane currents from myocytes manipulated into co...

متن کامل

Membrane glycoproteins of the nerve growth cone: diversity and growth regulation of oligosaccharides

A subcellular fraction prepared from fetal rat brain and enriched in growth cone membranes is analyzed for its lectin-binding proteins. Growth-associated glycoproteins are identified by comparing the growth cone glycoproteins with those of synaptosomes. Protein was resolved in one- or two-dimensional gels, electroblotted, and blots probed with radioiodinated concanavalin A, wheat germ agglutini...

متن کامل

P-65: Maternal Effect Genes in Mammalian Reproduction

Background: Regulation of gene expression in mammalian embryos is not completely known. Pre-implantation embryos need maternal RNA and proteins synthesized during oogenesis, to regulate development before mater-embryo transition, as the grown oocyte and the 1-cell zygote are transcriptionally silent. There are some oocyte-specific genes called maternal effect genes which may account for this ea...

متن کامل

PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone.

Exocytotic incorporation of plasmalemmal precursor vesicles (PPVs) into the cell surface is necessary for axonal outgrowth and is known to occur mainly at the nerve growth cone. We have demonstrated recently that plasmalemmal expansion is regulated at the growth cone by IGF-1, but not by BDNF, in a manner that is quasi independent of the neuron's perikaryon. To begin elucidating the signaling p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 1989